RTPCR – real time polymerase chain reaction Archives - Water Research Australia https://www.waterra.com.au/topic/rtpcr-real-time-polymerase-chain-reaction/ National leader in water solutions through collaboration and high impact research Wed, 21 Sep 2022 06:14:53 +0000 en-AU hourly 1 https://wordpress.org/?v=6.1.1 https://www.waterra.com.au/wp-content/uploads/2022/05/cropped-waterRA-favicon-1-32x32.png RTPCR – real time polymerase chain reaction Archives - Water Research Australia https://www.waterra.com.au/topic/rtpcr-real-time-polymerase-chain-reaction/ 32 32 Implications for enumeration, toxicity and bloom formation: ‘Are there more toxin genes than toxic cyanobacteria’? https://www.waterra.com.au/project/implications-for-enumeration-toxicity-and-bloom-formation-are-there-more-toxin-genes-than-toxic-cyanobacteria/ Thu, 08 Sep 2022 02:44:09 +0000 https://43.250.142.120/~waterrac/?post_type=ts-portfolio&p=9206 Blue-green algae reduce water quality, especially when they produce toxins...

The post Implications for enumeration, toxicity and bloom formation: ‘Are there more toxin genes than toxic cyanobacteria’? appeared first on Water Research Australia.

]]>

Project Description

Blue-green algae reduce water quality, especially when they produce toxins. Each algal cell can grow, reproduce all its DNA, and split into two ‘daughter’ cells, then those two ‘daughter’ cells produce four more until the numbers of algal cells bloom to extremely high numbers. High algal growth rates are associated with favourable environmental conditions (for the algae), stationary growth rates occur when the production of new cells is about the same as the number of dying cells, and if more cells die than are reproduced, the growth rate declines. The ability to predict or measure which of these three population growth rates is prevalent, and how much toxin is being produced, is information that the water industry needs to select the best methods for treating water. This project analysed the amount of DNA, and some specific sequences of DNA which correspond to the genes coding for toxins; and related the DNA analysis to actual counts of cells and measurements of toxin in water samples. This allowed the development of an improved and more informative technique for forecasting and monitoring toxic blue-green algae blooms.

The post Implications for enumeration, toxicity and bloom formation: ‘Are there more toxin genes than toxic cyanobacteria’? appeared first on Water Research Australia.

]]>
Management of Environmental E. coli https://www.waterra.com.au/project/management-of-environmental-e-coli/ Tue, 23 Aug 2022 00:52:41 +0000 https://43.250.142.120/~waterrac/?post_type=ts-portfolio&p=9042 E. coli bacteria naturally populate the gastrointestinal tract of humans and animals; they are usually harmless and are commonly excreted...

The post Management of Environmental E. coli appeared first on Water Research Australia.

]]>

Project Description

E. coli bacteria naturally populate the gastrointestinal tract of humans and animals; they are usually harmless and are commonly excreted. Faeces can also contain harmful microscopic pathogens, and this has led to the assumption that if harmless E. coli are found in water, that the drinking water has been contaminated with faeces that might also have contained pathogens that pose a risk to public health. Using E. coli as an indicator of faecal contamination was recently challenged by the finding that some E. coli strains live, grow and bloom in the environment, and their presence in water might not mean that the water has been contaminated with harmful pathogens. This research examined the environmental conditions associated with E. coli bloom formation in the context of climate-change adaptation and developed multiplex PCR tests which allow the identification of environmental and faecal E. coli. This information was added to a Utility Response Protocol.

The post Management of Environmental E. coli appeared first on Water Research Australia.

]]>
On-line monitoring of Cyanobacteria to predict coagulant doses and powdered activated carbon application in water treatment https://www.waterra.com.au/project/on-line-monitoring-of-cyanobacteria-to-predict-coagulant-doses-and-powdered-activated-carbon-application-in-water-treatment/ Mon, 22 Aug 2022 06:18:05 +0000 https://43.250.142.120/~waterrac/?post_type=ts-portfolio&p=9019 Water treatment plant operators remove cyanobacteria and the toxins they produce from source waters but calculating the amount of treatment needed for effective removal is difficult, particularly in bloom conditions when cyanobacterial cell numbers and toxins change quickly...

The post On-line monitoring of Cyanobacteria to predict coagulant doses and powdered activated carbon application in water treatment appeared first on Water Research Australia.

]]>

Project Description

Water treatment plant operators remove cyanobacteria and the toxins they produce from source waters but calculating the amount of treatment needed for effective removal is difficult, particularly in bloom conditions when cyanobacterial cell numbers and toxins change quickly. Current cell counting and toxin measurement can take hours or days to complete, and the results are not available quickly enough to help treatment plant operators respond to changing conditions. There is a need for a real-time method that gives instant results. This research examined the utility of fluorometers; probes that emit light that is ‘reflected’ back at different wavelengths by living cells and other matter in the water and is detected by the fluorometer. It was found that when only one species of cyanobacteria was present, there was a good correlation between the fluorescent signal and cell number, particularly when source waters were clear and not cloudy. Cell numbers did not relate well to levels of toxins or taste and odour compounds. When fluorometers were installed in 13 water treatment plants the correlation between cyanobacteria cell numbers and fluorometer signals was validated, and this led to the conclusion that fluorometers can give early warning of blue-green algae blooms.

The post On-line monitoring of Cyanobacteria to predict coagulant doses and powdered activated carbon application in water treatment appeared first on Water Research Australia.

]]>
Bad tastes, odours and toxins in our drinking water reservoirs: Are benthic cyanobacteria the culprits? https://www.waterra.com.au/project/bad-tastes-odours-and-toxins-in-our-drinking-water-reservoirs-are-benthic-cyanobacteria-the-culprits/ Mon, 22 Aug 2022 05:06:45 +0000 https://43.250.142.120/~waterrac/?post_type=ts-portfolio&p=9011 Blue-green algae (cyanobacteria) reduce water quality especially when they bloom and form high numbers of cells which produce toxins, and taste and odour compounds...

The post Bad tastes, odours and toxins in our drinking water reservoirs: Are benthic cyanobacteria the culprits? appeared first on Water Research Australia.

]]>

Project Description

Blue-green algae (cyanobacteria) reduce water quality especially when they bloom and form high numbers of cells which produce toxins, and taste and odour compounds. Most cyanobacteria photosynthesise and tend to grow and float at depths which optimise their exposure to sunlight, but an increase in unexplained occurrences of taste and odour compounds in reservoirs, and a bloom of benthic (bottom-living) cyanobacteria, forced the closure of a water supply. This research examined the role that bottom-living benthic cyanobacteria play in the production of toxins or taste and odour compounds. Seven DNA-based PCR tests were developed to identify benthic species of cyanobacteria and their capacity for producing toxins. A taste and odour compound, and two toxins were found in winter and spring in an SA reservoir, whereas a different taste and odour compound and toxin assemblage were found in summer and autumn in a reservoir in NSW. These results will help water suppliers to anticipate and manage future aesthetic or toxin issues related to benthic cyanobacteria.

The post Bad tastes, odours and toxins in our drinking water reservoirs: Are benthic cyanobacteria the culprits? appeared first on Water Research Australia.

]]>
Tool box development for microbial source tracking water sources and catchments https://www.waterra.com.au/project/tool-box-development-for-microbial-source-tracking-water-sources-and-catchments/ Mon, 22 Aug 2022 04:57:08 +0000 https://43.250.142.120/~waterrac/?post_type=ts-portfolio&p=9007 ‘Microbial source tracking’ (MST) is a technique that aims to identify the animal that excreted faeces and polluted water...

The post Tool box development for microbial source tracking water sources and catchments appeared first on Water Research Australia.

]]>

Project Description

‘Microbial source tracking’ (MST) is a technique that aims to identify the animal that excreted faeces and polluted water. There are a number of ways to do this, but the problem is that no one method accurately identifies the origins of faecal pollution in environmental water samples. This research found that faeces could be stored in a freezer or a laboratory -80°C cold-store for up to a month without changing the relative numbers of the different types of bacteria in the samples of faeces. Up to seven faeces samples from different animals were mixed together and examined using 17 techniques to identify the original animals. Three of the most accurate and reliable methods used mitochondrial DNA, the analysis of a bacterial enzyme sequence (beta-glucuronidase), and specific DNA sequences form bacteria known to come from humans, horses and cows. These three types of tests were selected for inclusion in a ‘Toolbox’ from which a combination of methods will allow accurate and reliable management of faecal contaminants in source waters.

The post Tool box development for microbial source tracking water sources and catchments appeared first on Water Research Australia.

]]>
Template A rapid, reliable and effective tool for assessing toxic ‘algal’ blooms in Vic water supplies – MT-PCR https://www.waterra.com.au/project/template-a-rapid-reliable-and-effective-tool-for-assessing-toxic-algal-blooms-in-vic-water-supplies-mt-pcr/ Mon, 22 Aug 2022 04:06:56 +0000 https://43.250.142.120/~waterrac/?post_type=ts-portfolio&p=8999 Blue-green algae (cyanobacteria) blooms decrease water quality by releasing toxins and unpalatable taste and odour compounds...

The post Template A rapid, reliable and effective tool for assessing toxic ‘algal’ blooms in Vic water supplies – MT-PCR appeared first on Water Research Australia.

]]>

Project Description

Blue-green algae (cyanobacteria) blooms decrease water quality by releasing toxins and unpalatable taste and odour compounds. The problem is that it is difficult to rapidly and accurately identify toxic cyanobacteria in drinking, recycled or recreational waters. This research developed a reliable and sensitive DNA-based PCR test which used robotic equipment to carry out the laboratory component of the test. The speed and accuracy of this diagnostic test has the potential to improve management of blooms and contribute to the maintenance of water quality.

The post Template A rapid, reliable and effective tool for assessing toxic ‘algal’ blooms in Vic water supplies – MT-PCR appeared first on Water Research Australia.

]]>
Literature Review: Crypto/Giardia in catchments https://www.waterra.com.au/project/literature-review-crypto-giardia-in-catchments/ Mon, 22 Aug 2022 03:37:14 +0000 https://43.250.142.120/~waterrac/?post_type=ts-portfolio&p=8993 Cryptosporidium, a microscopic single-cell parasite, forms an “oocyst” with a resistant outer layer analogous to an eggshell...

The post Literature Review: Crypto/Giardia in catchments appeared first on Water Research Australia.

]]>

Project Description

Cryptosporidium, a microscopic single-cell parasite, forms an “oocyst” with a resistant outer layer analogous to an eggshell. Oocysts survive for a long time in the environment but UV in sunlight, and high temperatures that cause desiccation, kill them. If a mammal drinks water containing live oocysts, they embed in the gut wall and continue their lifecycle until eventually many more oocysts are excreted. There are 26 species of cryptosporidium but only five infect humans, and two; Cryptosporidium hominus and Cryptosporidium parvum, cause approximately 95% of all human infections. C. hominus occurs only in humans, but C. parvum is also found in cattle, sheep, and other animals. The problem is that human-infecting oocysts are excreted by animals in catchments and rain can wash live oocysts into water reservoirs. This research collated peer-reviewed published literature, and information and data collected by the water industry, then characterised the distribution of different Cryptosporidium species in Australian catchments. This led to recognition of a research need to track and predict live and dead oocyst transport during different weather events, and to model and evaluate catchment management initiatives such as excluding cattle from reservoir areas.

The post Literature Review: Crypto/Giardia in catchments appeared first on Water Research Australia.

]]>