chlorine Archives - Water Research Australia https://www.waterra.com.au/topic/chlorine/ National leader in water solutions through collaboration and high impact research Wed, 21 Sep 2022 06:09:00 +0000 en-AU hourly 1 https://wordpress.org/?v=6.1.1 https://www.waterra.com.au/wp-content/uploads/2022/05/cropped-waterRA-favicon-1-32x32.png chlorine Archives - Water Research Australia https://www.waterra.com.au/topic/chlorine/ 32 32 UV/Chlorine AOP in Potable Reuse: Assessment of applicability, operational issues, and potential by-products https://www.waterra.com.au/project/uv-chlorine-aop-in-potable-reuse-assessment-of-applicability-operational-issues-and-potential-by-products/ Thu, 01 Sep 2022 02:03:25 +0000 https://43.250.142.120/~waterrac/?post_type=ts-portfolio&p=9202 Potable water reuse is increasingly recognised as an important water management strategy for future Australian and international cities...

The post UV/Chlorine AOP in Potable Reuse: Assessment of applicability, operational issues, and potential by-products appeared first on Water Research Australia.

]]>

Project Description

Potable water reuse is increasingly recognised as an important water management strategy for future Australian and international cities. In order to produce the highest quality drinking water from municipal wastewater sources, advanced treatment by ultraviolet radiation advanced oxidation processes (UV-AOPs) is a prominent feature of some of the most sophisticated potable reuse projects. Validation and monitoring of the UV aspects of UV-AOPs are well established and effective. However, validation of the AOP aspects (i.e., the production of oxidative radical species) is poorly developed and ongoing performance monitoring methods are currently impractical for most projects. This is a significant gap in advanced water treatment process reliability for chemical contaminant degradation. In terms of full-scale operational potable reuse projects, high intensity UV and UV-peroxide are the only fully established processes. However, there is rapidly growing interest in an alternative catalytical process, UV-chlorine. There is one full-scale operational UV-chlorine AOP plant in California, but currently no experience with this technology in Australia.
This project will aim to develop a framework for the validation and ongoing performance monitoring of the advanced oxidation aspects of UV-chlorine employed for potable water reuse. Researchers will systematically explore relationships between monitorable UV-chlorine operational conditions and treatment performance outcomes. The development of this framework will allow for ongoing practical and cost-effective real-time performance monitoring, satisfying a key requirement of Australian water quality public health regulators when assessing and licencing proposed potable water reuse projects.

The post UV/Chlorine AOP in Potable Reuse: Assessment of applicability, operational issues, and potential by-products appeared first on Water Research Australia.

]]>
Transformation chemistry of EDCS/PPCPS resulting from the disinfection of drinking water https://www.waterra.com.au/project/transformation-chemistry-of-edcs-ppcps-resulting-from-the-disinfection-of-drinking-water/ Tue, 30 Aug 2022 03:09:21 +0000 https://43.250.142.120/~waterrac/?post_type=ts-portfolio&p=9213 This project proposes to use novel concepts in computational chemistry to predict the likely transformation products (TP) of relevant EDCs/PPCPs with a range of disinfection and oxidation options (such as chlorine, chloramines and chlorine dioxide) commonly used in the production of drinking water, and to apply comprehensive in vitro toxicity testing to determine their likely toxicity profile...

The post Transformation chemistry of EDCS/PPCPS resulting from the disinfection of drinking water appeared first on Water Research Australia.

]]>

Project Description

This project proposes to use novel concepts in computational chemistry to predict the likely transformation products (TP) of relevant EDCs/PPCPs with a range of disinfection and oxidation options (such as chlorine, chloramines and chlorine dioxide) commonly used in the production of drinking water, and to apply comprehensive in vitro toxicity testing to determine their likely toxicity profile.

The post Transformation chemistry of EDCS/PPCPS resulting from the disinfection of drinking water appeared first on Water Research Australia.

]]>
Occurrence and management of NDMA and other nitrogenous disinfection by-products in Australian drinking and recycled waters https://www.waterra.com.au/project/occurrence-and-management-of-ndma-and-other-nitrogenous-disinfection-by-products-in-australian-drinking-and-recycled-waters/ Tue, 30 Aug 2022 01:50:18 +0000 https://43.250.142.120/~waterrac/?post_type=ts-portfolio&p=9209 N-nitrosodiumdimethylamine (NDMA) in drinking water is one of many factors – such as a persons’ genes – that cause cancer...

The post Occurrence and management of NDMA and other nitrogenous disinfection by-products in Australian drinking and recycled waters appeared first on Water Research Australia.

]]>

Project Description

N-nitrosodiumdimethylamine (NDMA) in drinking water is one of many factors – such as a persons’ genes – that cause cancer. Although NDMA is not a sole cause of cancer, the water industry aims to minimise its contribution to illness and disease. This research measured levels of NDMA in drinking and recycled waters and found the majority well below the Australian Drinking Water Guideline values that are considered safe for public consumption. Different sources of NDMA were identified and water monitoring and treatment strategies to optimise NDMA removal from source waters were recommended.

The post Occurrence and management of NDMA and other nitrogenous disinfection by-products in Australian drinking and recycled waters appeared first on Water Research Australia.

]]>
Identifying and quantifying the outcomes of disinfection by-product research: Impacts on the Australian and international water industry https://www.waterra.com.au/project/identifying-and-quantifying-the-outcomes-of-disinfection-by-product-research-impacts-on-the-australian-and-international-water-industry/ Tue, 23 Aug 2022 00:43:53 +0000 https://43.250.142.120/~waterrac/?post_type=ts-portfolio&p=8900 Disinfection is essential for removing harmful microbial pathogens and making safe drinking water but can also cause formation of disinfection by-products (DBPs), some of which pose a health risk...

The post Identifying and quantifying the outcomes of disinfection by-product research: Impacts on the Australian and international water industry appeared first on Water Research Australia.

]]>

Project Description

Disinfection is essential for removing harmful microbial pathogens and making safe drinking water but can also cause formation of disinfection by-products (DBPs), some of which pose a health risk. Thirty years of research have amassed a wealth of knowledge about the identification, formation, treatment and control, toxicology and epidemiology of DBPs in Australia. This project compiled, assessed and presented an overview of DBP-related research in Australia.

The post Identifying and quantifying the outcomes of disinfection by-product research: Impacts on the Australian and international water industry appeared first on Water Research Australia.

]]>
Develop evidence-based approaches to monitor and manage chlorine & chloramine residuals https://www.waterra.com.au/project/develop-evidence-based-approaches-to-monitor-and-manage-chlorine-chloramine-residuals/ Mon, 22 Aug 2022 06:04:56 +0000 https://43.250.142.120/~waterrac/?post_type=ts-portfolio&p=9017 Microscopic pathogens in drinking water pose a risk to public health...

The post Develop evidence-based approaches to monitor and manage chlorine & chloramine residuals appeared first on Water Research Australia.

]]>

Project Description

Microscopic pathogens in drinking water pose a risk to public health. In Australia, chlorine or chloramine are used to inactivate these pathogens, to disinfect drinking water and prevent widespread outbreaks of debilitating illness in large populations. Although largely successful, problems arise when drinking water is contaminated by pathogens after being disinfected in the treatment plant but before reaching the customer. A variety of situations cause this, one being small pipe leaks which become a route for soil micro-organisms to get into drinking water. To prevent pathogen contamination in pipe networks, higher levels of disinfectants can be added at the treatment plant, or secondary disinfection can be administered in the pipe network. This research project produced a guidance manual which explains how to maintain and monitor effective disinfection levels in post-treatment pipelines, and the major challenges to maintaining effective disinfection.

The post Develop evidence-based approaches to monitor and manage chlorine & chloramine residuals appeared first on Water Research Australia.

]]>
Characterisation of DBP formation for water quality management – Stage 1 https://www.waterra.com.au/project/characterisation-of-dbp-formation-for-water-quality-management-stage-1/ Mon, 22 Aug 2022 04:01:48 +0000 https://43.250.142.120/~waterrac/?post_type=ts-portfolio&p=8997 Source waters are disinfected to remove harmful pathogens, but chlorine reacts with organic matter and bromides to form disinfection by-products (DBPs) which can affect health...

The post Characterisation of DBP formation for water quality management – Stage 1 appeared first on Water Research Australia.

]]>

Project Description

Source waters are disinfected to remove harmful pathogens, but chlorine reacts with organic matter and bromides to form disinfection by-products (DBPs) which can affect health. Water treatment reduces DBPs to safe levels by using alum to remove organic matter before disinfection but some water sources, particularly those with high bromine levels, are still difficult to treat. This research aimed to compile the best protocols for alum coagulation and disinfection when source waters contain different levels of organic matter and bromides, and to relate these to health risks. When organic matter was removed with 125 mg/L alum, and this treated source water was disinfected twice, and the first dose was calculated to generate chlorine levels of 0.5 mg / L for two days before administering the second dose, then DBP levels in drinking water were minimised. Neither alum-treated nor disinfected water caused toxicity in two laboratory tests used to examine risks to health.

The post Characterisation of DBP formation for water quality management – Stage 1 appeared first on Water Research Australia.

]]>
Nitrosamines, including N-nitrosodimethylamine (NDMA), and other nitrogenous disinfection by-products in Australian drinking waters https://www.waterra.com.au/project/nitrosamines-including-n-nitrosodimethylamine-ndma-and-other-nitrogenous-disinfection-by-products-in-australian-drinking-waters/ Mon, 22 Aug 2022 03:52:09 +0000 https://43.250.142.120/~waterrac/?post_type=ts-portfolio&p=8995 Components of dissolved organic matter (DOM) and dissolved organic nitrogen (DON) in source waters can react with disinfecting chlorine or chloramine to form nitrogenous disinfection byproducts (n-DBPs) which might be toxic and hazardous to health...

The post Nitrosamines, including N-nitrosodimethylamine (NDMA), and other nitrogenous disinfection by-products in Australian drinking waters appeared first on Water Research Australia.

]]>

Project Description

Components of dissolved organic matter (DOM) and dissolved organic nitrogen (DON) in source waters can react with disinfecting chlorine or chloramine to form nitrogenous disinfection byproducts (n-DBPs) which might be toxic and hazardous to health. In this research, water samples were collected from nine water treatment plants and found to contain 28 n-DBPs. Total n-DBP formation, and particularly brominated n-DBP formation, was affected more by the levels of bromine in raw water than the different forms of nitrogen, and this led to the recommendation that it could be beneficial to monitor raw waters with high bromine concentrations. Although chloramination caused formation of more n-DBPs than chlorination, coagulation treatment decreased total DBP levels. Further research was recommended to characterise the toxicity of n-DBPs and to optimise the removal of DOM, DON and other n-DBP precursors by using GAC Acticarb in the treatment train.

The post Nitrosamines, including N-nitrosodimethylamine (NDMA), and other nitrogenous disinfection by-products in Australian drinking waters appeared first on Water Research Australia.

]]>
Optimising conventional treatment for the removal of cyanobacteria and their toxins https://www.waterra.com.au/project/optimising-conventional-treatment-for-the-removal-of-cyanobacteria-and-their-toxins/ Mon, 22 Aug 2022 02:35:29 +0000 https://43.250.142.120/~waterrac/?post_type=ts-portfolio&p=8884 Cyanobacterial blooms in surface waters are a source of cells, taste and odour compounds, and a range of toxins...

The post Optimising conventional treatment for the removal of cyanobacteria and their toxins appeared first on Water Research Australia.

]]>

Project Description

Cyanobacterial blooms in surface waters are a source of cells, taste and odour compounds, and a range of toxins. This research optimised treatment processes for the removal and control of cyanobacteria and their metabolites from a range of source waters. It was concluded that pre-chlorination is not advisable when cyanobacteria are present, but that in some situation’s potassium permanganate is a viable alternative. Although all three tested coagulants; ferric chloride, aluminium chlorohydrate and aluminium sulphate (alum) removed 90 to 95% of cells, alum at pH 6.3 was the most cost-effective. Maintaining pH > 6 reduced cell lysis and metabolite release. Since cyanobacteria in sludge remained viable for 2-3 weeks it was recommended that sludge detention in the clarifiers should be minimised.

The post Optimising conventional treatment for the removal of cyanobacteria and their toxins appeared first on Water Research Australia.

]]>
Optimum control of chloramine in water distribution systems https://www.waterra.com.au/project/optimum-control-of-chloramine-in-water-distribution-systems/ Mon, 22 Aug 2022 02:26:11 +0000 https://43.250.142.120/~waterrac/?post_type=ts-portfolio&p=8985 Chlorine removes harmful pathogens from water but has the disadvantage of forming disinfection by-products (DBPs) by reacting with organic matter sometimes found in water...

The post Optimum control of chloramine in water distribution systems appeared first on Water Research Australia.

]]>

Project Description

Chlorine removes harmful pathogens from water but has the disadvantage of forming disinfection by-products (DBPs) by reacting with organic matter sometimes found in water. Chloramine also disinfects, is less likely to form DBPs and is more stable, so remains active in for longer in the pipelines which distribute drinking water from the plant to the tap. The problem is that it is difficult to predict exactly how much chloramine to add; it needs to be enough to maintain disinfecting activity in the pipeline distribution system, but not so much that customers find the smell of chlorine in tap water unpleasant. Traditionally, the chemical reaction rate has been used to predict the gradual ‘decay’ of chloramine in pipelines, but this is inaccurate. This research developed a computer software statistical programme that uses ‘artificial neural network’ concepts and operations to predict the longevity of chloramine residuals in water distribution systems. This is more accurate than traditional methods.

The post Optimum control of chloramine in water distribution systems appeared first on Water Research Australia.

]]>
Novel treatment methods for reduction of bromide and iodide in drinking water sources https://www.waterra.com.au/project/novel-treatment-methods-for-reduction-of-bromide-and-iodide-in-drinking-water-sources/ Mon, 22 Aug 2022 00:31:17 +0000 https://43.250.142.120/~waterrac/?post_type=ts-portfolio&p=8968 Water is disinfected to remove harmful microbes and pathogens such as cholera and typhoid...

The post Novel treatment methods for reduction of bromide and iodide in drinking water sources appeared first on Water Research Australia.

]]>

Project Description

Water is disinfected to remove harmful microbes and pathogens such as cholera and typhoid. The problem is that disinfection of certain types of waters, such as those containing naturally high levels of bromide or iodide, can cause the formation of disinfection by-products (DBPs). Some DBPs have been linked to cancer although this association is relatively weak because many other factors have a much stronger influence on the development of cancer than drinking water. Nevertheless, the water industry aspires to minimise this risk and conducted this research to measure the levels of bromide, iodide and other substances in Australian source waters. A number of treatments with potential to remove bromide were examined, and it was found that chlorination reduced the risk posed by iodo-DPBs.

The post Novel treatment methods for reduction of bromide and iodide in drinking water sources appeared first on Water Research Australia.

]]>