supernatant Archives - Water Research Australia https://www.waterra.com.au/topic/supernatant/ National leader in water solutions through collaboration and high impact research Wed, 21 Sep 2022 05:56:22 +0000 en-AU hourly 1 https://wordpress.org/?v=6.1.1 https://www.waterra.com.au/wp-content/uploads/2022/05/cropped-waterRA-favicon-1-32x32.png supernatant Archives - Water Research Australia https://www.waterra.com.au/topic/supernatant/ 32 32 Investigating supernatant return management practices https://www.waterra.com.au/project/investigating-supernatant-return-management-practices/ Tue, 30 Aug 2022 06:37:23 +0000 https://43.250.142.120/~waterrac/?post_type=ts-portfolio&p=9221 The Australian water industry is unsure of the original basis of the maximum 10% supernatant return rule, in the context of water treatment...

The post Investigating supernatant return management practices appeared first on Water Research Australia.

]]>

Status: Complete

National Research Priority: Service Delivery

Project Description

The Australian water industry is unsure of the original basis of the maximum 10% supernatant return rule, in the context of water treatment. This project aims to understand the basis of the 10% supernatant return rule and what the pathogen risks of supernatant are.

The post Investigating supernatant return management practices appeared first on Water Research Australia.

]]>
Pathogen removal by Australian activated sludge https://www.waterra.com.au/project/pathogen-removal-by-australian-activated-sludge/ Tue, 23 Aug 2022 02:44:17 +0000 https://43.250.142.120/~waterrac/?post_type=ts-portfolio&p=9063 Sewage is delivered to wastewater treatment plants (WWTPs) where benign microbial organisms within ‘activated sludge’ vessels contribute to the removal of harmful pathogens from the sewage...

The post Pathogen removal by Australian activated sludge appeared first on Water Research Australia.

]]>

Project Description

Sewage is delivered to wastewater treatment plants (WWTPs) where benign microbial organisms within ‘activated sludge’ vessels contribute to the removal of harmful pathogens from the sewage. The activity and pathogen-removing ability of these helpful organisms is affected by many factors including temperature, numbers of fine particles, pH, ammonia, and the time available to remove the pathogens. Regulatory authorities require at least 90% (one log removal value, LRV) of the pathogens to be removed, but as WWTP operating conditions vary, the LRVs change. This problem led to recognition of the need to develop models capable of predicting relationships between plant operating parameters (such as temperature) and pathogen removal. This research reviewed published reports and datasets, then set up and ran an experimental activated sludge pilot plant to generate data about a range of operating conditions and pathogen removals. These datasets were used to develop models which had only a ‘poor’ predictive value for clostridia but were ‘good’ for giardia and ‘very good to excellent’ for the removal of other pathogens. These models need to be extended with more operating conditions but have the potential to be used to attribute LRVs and for future integration into online real-time monitoring.

The post Pathogen removal by Australian activated sludge appeared first on Water Research Australia.

]]>
Management of treatment sludge impacted by cyanobacteria https://www.waterra.com.au/project/management-of-treatment-sludge-impacted-by-cyanobacteria/ Mon, 22 Aug 2022 06:29:57 +0000 https://43.250.142.120/~waterrac/?post_type=ts-portfolio&p=9023 Water treatment plants (WTP) take in source waters then remove 95-99% of blue-green algae (cyanobacteria) cells and the toxins they produce...

The post Management of treatment sludge impacted by cyanobacteria appeared first on Water Research Australia.

]]>

Project Description

Water treatment plants (WTP) take in source waters then remove 95-99% of blue-green algae (cyanobacteria) cells and the toxins they produce. During this removal process waste sludge is generated and transferred from clarifier tanks in the treatment plant to lagoons. It was thought that confinement in the sludge killed the cyanobacteria, but this research found that when algal blooms have generated very high cell numbers, viable, toxin-producing cyanobacteria are retained in the sludge and can release toxins into the clarifier supernatant. It was concluded that timely removal to lagoons will avoid problems, and it is recommended that risk assessment for recycling lagoon supernatant back to the head of the WTP should incorporate extended times of 3 to 4 weeks after the end of algal blooms, to ensure cyanobacterial cell death and toxin degradation.

The post Management of treatment sludge impacted by cyanobacteria appeared first on Water Research Australia.

]]>