MS mass spectrometry Archives - Water Research Australia https://www.waterra.com.au/topic/ms-mass-spectrometry/ National leader in water solutions through collaboration and high impact research Wed, 21 Sep 2022 05:03:25 +0000 en-AU hourly 1 https://wordpress.org/?v=6.1.1 https://www.waterra.com.au/wp-content/uploads/2022/05/cropped-waterRA-favicon-1-32x32.png MS mass spectrometry Archives - Water Research Australia https://www.waterra.com.au/topic/ms-mass-spectrometry/ 32 32 Treating wastewater for potable reuse: removal of chemicals of concern using advanced oxidation processes https://www.waterra.com.au/project/treating-wastewater-for-potable-reuse-removal-of-chemicals-of-concern-using-advanced-oxidation-processes/ Thu, 25 Aug 2022 02:35:12 +0000 https://43.250.142.120/~waterrac/?post_type=ts-portfolio&p=9098 Recycling wastewater by using reverse osmosis (RO) and ultrafiltration appears to be associated with the formation of some groups of micropollutants but there is not much information about these processes...

The post Treating wastewater for potable reuse: removal of chemicals of concern using advanced oxidation processes appeared first on Water Research Australia.

]]>

Project Description

Recycling wastewater by using reverse osmosis (RO) and ultrafiltration appears to be associated with the formation of some groups of micropollutants but there is not much information about these processes. This research selected iodinated disinfection by-products (DBPs) and N-nitrosamines (NDMA), and benzotriazoles and benzothiazoles, which are compounds in dishwasher detergents, for further investigation. It was concluded that minimising the formation of dichloramine (a precursor molecule to NDMA formation) by reducing pH and maximising activated sludge ammonia production, reduced the formation of N-nitrosamines in RO-treated wastewater. Iodinated DBPs and benzotriazoles were detected in RO treated wastewater in this study but at lower concentrations than those thought to pose a risk to human health.

The post Treating wastewater for potable reuse: removal of chemicals of concern using advanced oxidation processes appeared first on Water Research Australia.

]]>
Ecotoxicity toolbox to evaluate water quality for recycling https://www.waterra.com.au/project/ecotoxicity-toolbox-to-evaluate-water-quality-for-recycling/ Tue, 23 Aug 2022 02:53:16 +0000 https://43.250.142.120/~waterrac/?post_type=ts-portfolio&p=9067 Wastewater must be treated to remove harmful pathogens and chemicals before it can be released to the environment, but the cost of proving that all pollutants have been removed is prohibitive because potentially thousands of separate chemicals would have to be measured...

The post Ecotoxicity toolbox to evaluate water quality for recycling appeared first on Water Research Australia.

]]>

Project Description

Wastewater must be treated to remove harmful pathogens and chemicals before it can be released to the environment, but the cost of proving that all pollutants have been removed is prohibitive because potentially thousands of separate chemicals would have to be measured. Another problem is that classical chemistry measurement tests are sometimes not sensitive enough to be able to detect the very low levels of chemicals which still harm animals and plants. This research developed a suite of extremely sensitive in vitro cell culture tests and an in-situ laboratory test in which mosquitofish were observed when swimming in recycled treated water. These bioassays measured the effects of mixtures of contaminants and were compared with traditional chemical measurements of separate contaminants. The in vitro cell culture, in situ mosquitofish and classical chemical analyses of selected contaminants generated equivalent results and led to the conclusion that combining multiple lines of evidence into a toolbox approach for the assessment of water quality provides data which is more informative and relevant when assessing potential impacts on the environment than traditional chemical measurements alone.

The post Ecotoxicity toolbox to evaluate water quality for recycling appeared first on Water Research Australia.

]]>
A national approach to risk assessment, risk communication and management of chemical hazards from recycled water https://www.waterra.com.au/project/a-national-approach-to-risk-assessment-risk-communication-and-management-of-chemical-hazards-from-recycled-water/ Tue, 23 Aug 2022 02:48:33 +0000 https://43.250.142.120/~waterrac/?post_type=ts-portfolio&p=9065 Wastewater (WW) contains harmful chemicals, including pesticides, that can disrupt normal gene function or hormone activity...

The post A national approach to risk assessment, risk communication and management of chemical hazards from recycled water appeared first on Water Research Australia.

]]>

Project Description

Wastewater (WW) contains harmful chemicals, including pesticides, that can disrupt normal gene function or hormone activity. The cost of measuring each separate contaminant at the frequency needed to demonstrate the safety of recycled WW is prohibitive. This research reviewed the risk assessment and regulation of chemicals in Australian water, with a focus on ‘thresholds of toxicological concern’. Laboratory techniques were developed to extract and concentrate WW contaminants into solutions suitable for analysis using both new in vitro cell culture assays and analysis in expensive, established chemical tests. WW and treated samples were collected from nine Australian water reclamation plants. The total effect of each sample (which contained a mixture of contaminants) on cell death, gene integrity and aspects of liver, hormone, nerve and immune system activity, was determined using in vitro cell culture bioassays, and compared with the classical chemical measurement of each separate contaminant. The cheaper cell-culture tests correlated well to the levels of groups of chemicals and could be used to find thresholds of toxicological concern. Both testing regimens also demonstrated that reverse osmosis is a highly effective method that removes harmful chemicals to levels much lower than those designated safe by regulatory authorities.

The post A national approach to risk assessment, risk communication and management of chemical hazards from recycled water appeared first on Water Research Australia.

]]>