sedimentation Archives - Water Research Australia https://www.waterra.com.au/topic/sedimentation/ National leader in water solutions through collaboration and high impact research Wed, 21 Sep 2022 03:47:34 +0000 en-AU hourly 1 https://wordpress.org/?v=6.1.1 https://www.waterra.com.au/wp-content/uploads/2022/05/cropped-waterRA-favicon-1-32x32.png sedimentation Archives - Water Research Australia https://www.waterra.com.au/topic/sedimentation/ 32 32 Ultrasound for Control of Cyanobacteria https://www.waterra.com.au/project/ultrasound-for-control-of-cyanobacteria/ Mon, 22 Aug 2022 02:22:25 +0000 https://43.250.142.120/~waterrac/?post_type=ts-portfolio&p=8983 Cyanobacterial blooms are a major problem for reservoir managers because of the large numbers of cells and the toxins they contain...

The post Ultrasound for Control of Cyanobacteria appeared first on Water Research Australia.

]]>

Project Description

Cyanobacterial blooms are a major problem for reservoir managers because of the large numbers of cells and the toxins they contain. These blue-green algae blooms have traditionally been treated with the algaecide copper sulphate, but this was expensive and unsustainable because it killed non-target species and left residual contaminants. This research examined and rejected alternatives: other copper-based algaecides, hydrogen peroxide, substances that trap cyanobacterial-growth supporting nutrients on the floor of the reservoir, and mechanical surface mixers. Laboratory experiments that tested the ability of ultrasound to prevent the photosynthetic cyanobacteria from floating at the depth that optimises light absorption were initially promising because the ultrasound reduced photosynthesis and metabolism and the blue-green algae died. Unfortunately, when an ultrasound system was deployed in a reservoir, the much larger volume of water attenuated and ‘absorbed’ the low-power ultrasound and led to the conclusion that sustainable, environmentally friendly levels of ultrasound do not provide effective control of blue-green algae. This rigorously conducted scientific study has generated useful information about methods which do not work, and resources can now be directed to promising new innovations.

The post Ultrasound for Control of Cyanobacteria appeared first on Water Research Australia.

]]>
Inactivation of Cryptosporidium across the wastewater treatment train for water recycling https://www.waterra.com.au/project/inactivation-of-cryptosporidium-across-the-wastewater-treatment-train-for-water-recycling/ Fri, 27 Apr 2018 01:41:19 +0000 http://industco.themestek.com/?post_type=ts_portfolio&p=4091 Cryptosporidium is a waterborne microscopic parasite with different forms at various stages of its lifecycle...

The post Inactivation of Cryptosporidium across the wastewater treatment train for water recycling appeared first on Water Research Australia.

]]>

Project Description

Cryptosporidium is a waterborne microscopic parasite with different forms at various stages of its lifecycle. One form, the spherical oocyst, is excreted by infected people and transported in rivers and surface waters. The problem is that it is not known if oocysts found in water are dead or are alive and infectious. This leads to an overestimation of the public health risk posed by oocysts found in source waters.

This research developed an in vitro cell culture test to differentiate between dead and infectious oocysts. The immortalised HCT-8 cell line was derived from cancerous human intestinal cells. When the cells are grown in a culture vessel, they display many characteristics of normal human gut cells. It was discovered that treating oocysts with acid to mimic stomach pH and using centrifugal force to ensure oocysts contact the HCT-8 cells, live (but not dead) oocysts react as though they are infecting a human host. The oocysts ‘hatch’ the next sporozoite form of the lifecycle, and these can be counted using a microscope. This ‘infectivity assay’ gives an improved, more accurate method for quantifying risks to human health presented by unidentified cryptosporidium oocysts in water.

The post Inactivation of Cryptosporidium across the wastewater treatment train for water recycling appeared first on Water Research Australia.

]]>